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Abstract 

Rationale & Objective: Extreme heat exposure (EHE) is associated with multiple diseases. 

However, our current understanding of the specific impact of extreme heat exposure on kidney 

disease is limited.  

Study Design: Case-crossover study. 

Setting & Participants: 1,114,322 emergency department (ED) visits with a principal diagnosis 

of kidney disease were identified in New York state, 2005-2013. 

Exposure: EHE was defined as when the daily temperature exceeded the 90th percentile 

temperature of that month during the study period in the county. 

Outcomes: ED visits with a principal diagnosis of kidney disease and its subtypes (International 

Classification of Diseases 9 (ICD-9): 580-599, 788). 

Analytical Approach: EHE on the ED visit days was compared to EHE on control days using a 

conditional logistic regression model, controlling for humidity, air pollutants, and holidays. The 

excess risk of kidney disease was calculated for a week (0-6 lag days) after EHE during the 

warm season (May- September). We also stratified our estimates by socio-demographic 

characteristics. 

Results: EHE was associated with a 1.7% (lag day 0) to 3.1% (lag day 2) higher risk of ED visits 

related to kidney disease, with a stronger association with a greater number of EHE days in the 
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previous week. The association with EHE lasted for an entire week and was stronger in the 

transitional months (i.e., May and September; excess rates ranged from 1.8% to 5.1%) rather 

than the summer months (June through August; excess rates ranged from 1.5% to 2.7%). The 

strength of association was greater among those with ED visits related to acute kidney injury, 

kidney stones, and urinary tract infections. Age and gender may modify the association between 

EHE and ED visits. 

Limitations: Individual exposure to heat, i.e., how long people were outside or if they had 

access to air conditioning, was unknown. 

Conclusions: Extreme heat exposure was significantly associated with a dose-dependent 

increased risk of ED visits for kidney disease. 

 

Keywords: heatwave, renal disease, ambient temperature, climate change, warm season, heat 

stress, acute kidney injury (AKI), global warming, environmental health,  
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PLAIN LANGUAGE SUMMARY 

Given the increasing frequency and intensity of extreme heat exposure due to climate change and 

the growing prevalence of kidney disease worldwide, we examined their association with one 

another. We examined the association between extreme heat exposure and kidney disease–

related emergency department (ED) visits based on seasons and disease subtypes in New York 

state. Extreme heat exposure was significantly associated with an increased risk of ED visits for 

multiple types of kidney disease (mainly acute kidney injury, kidney stones, and urinary tract 

infections). Furthermore, the impact of extreme heat exposure lasted a week and was stronger in 

the transitional months (May and September) than the summer months.  
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Introduction 

Excess death and morbidity due to kidney disease pose substantial public health and 

economic burdens around the globe.1,2,3 Additionally, kidney disease is a key determinant of 

poor outcomes for other important non-communicable diseases (NCDs).4 In fact, 7.6% of the 1.4 

million annual cardiovascular disease (CVD) deaths worldwide can be attributed to impaired 

kidney function.1 Together, kidney disease, diabetes, hypertension, and CVD profoundly impact 

global morbidity and mortality trends,4 but kidney disease receives far less attention in research 

on the treatment and etiology of NCDs. While many important NCDs have declined in recent 

years, kidney disease has experienced a slower rate of decline and even increased in some 

regions.4 Thus, the prevention of kidney disease in high-risk groups warrants greater prominence 

on the global public health agenda.4 

In recent decades, climate change has played an increasing role in the world's growing 

burden of kidney disease.2 The unprecedented elevation of ambient temperatures worldwide 

substantially impacts human health.5 Previous studies have demonstrated associations between 

extreme heat exposure and increased incidence,6 morbidity,7 and hospital admission rates for 

kidney disease.8–12 Various studies have assessed the associations between extreme heat 

exposure and emergency department (ED) visits for kidney disease overall13–18 and various 

subtypes, including acute kidney injury (AKI),13,14,17,19–21 chronic kidney disease (CKD),13,20 
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kidney stones,22,23 urinary tract infections (UTIs), and renal colic.18 However, the collective 

results are inconclusive. There are still multiple knowledge gaps in substantiating the 

associations between extreme heat exposure and renal ED visits, including a lack of studies 

assessing 1) lag and dose-dependent effects; 2) impacts of extreme heat exposure in transitional 

months before and after summer (May and September); 3) associations between extreme heat 

exposure and kidney disease subtypes; and 4) risks among populations with existing kidney 

disease who are highly vulnerable to extreme heat exposure. 

Our study fills existing knowledge gaps by assessing the associations between extreme 

heat exposure and ED visits related to kidney disease overall and by subtype in summer and 

transitional months in New York state. In addition, we stratified our data by socio-demographic 

characteristics to further uncover associations between extreme heat exposure and renal ED 

visits. Given the increasing frequency and intensity of extreme heat in weather patterns due to 

climate change and the growing prevalence of kidney disease worldwide, it is imperative to 

elucidate the association between extreme heat exposure and the various subtypes of kidney 

disease. 

Methods 

Study design and health outcome 
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We used a time-stratified case-crossover design to study the association of extreme heat 

exposure with the transient acute and severe exacerbation of kidney diseases by using ED visit 

data.24–26 The case-crossover design contrasts extreme heat exposure immediately before the ED 

visits due to kidney disease (case days) to other times when the individual did not go to the ED 

(control days). We defined control days as the same days of the week in the same calendar month 

as the corresponding case day, resulting in 3 or 4 control days for each case day. We also 

examined the associations on lag days 0–6 (the 7 days following the extreme heat exposure). 

Compared to more conventional study designs, cases serve as their own controls in a case-

crossover analysis. Therefore, inherited confounders, such as age, gender, unchanged lifestyle, 

and some time-varying factors, were automatically controlled.27 We used health data from the 

New York Statewide Planning and Research Cooperative System (SPARCS), a legislatively 

mandated database covering over 95% of hospital records in New York state.25 We obtained ED 

visits reported with a principal diagnosis of acute and chronic kidney diseases (International 

Classification of Diseases 9 (ICD-9): 580-599, 788) from January 1, 2005 through December 31, 

2013. As in our previous research28, we included the following eight major kidney disease 

subtypes: AKI (code 584), CKD (code 585), UTI (code 599), kidney stone (code 592), lower 

urinary tract calculi (code 594), nephritis and nephrosis (codes 580–583, 590, 591), other kidney 

and ureter disorders (codes 586–589, 593), and other lower urinary tract disorders (codes 595–
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598, 788). We included acute exacerbations of all kidney diseases to properly assess the acute 

and transient effects according to the assumption of a case-crossover design. In addition, 

previous literature found that acute onset or exacerbation of many chronic conditions, such as 

CKD13,20 and kidney stones22,23, are significantly related to extreme heat exposure. To ensure a 

valid outcome definition, we used the principal diagnosis (or discharge diagnosis) confirmed by 

laboratory testing and clinical examination. Using the principal diagnosis allowed us to identify 

situations where kidney disease was the leading cause of the ED visit rather than being a 

morbidity noted in the medical record of uncertain origin and relevance. Furthermore, using ED 

data for acute kidney disease outcomes was appropriate as these conditions require immediate 

medical attention. Patients with multiple ED visits were included and treated as independent 

individual cases. However, we assumed that readmission did not affect the results because the 

percentage of patients with multiple renal ED visits occurring within 30 days was low (˜5%), and 

we focused on acute exacerbation events rather than incident cases. 

This study was approved by the Institutional Review Board (IRB) at the University at 

Albany, State University of New York (approval number 17X189). Individual-level informed 

consent was waived by the IRB as the data was statistically de-identified except for residential 

address, which was deleted after being geocoded to the longitude and latitude coordinates and 

linked with the meteorological data. 
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Exposure data and definition 

 Daily weather data were obtained from the US Environmental Protection Agency (EPA)29 

and National Oceanic and Atmospheric Administration (NOAA).30 We assigned the county-level 

(62 counties in New York state) temperature and humidity exposure to the individual level since 

ambient temperature and humidity were not likely to change significantly within a county. We 

used the 90th percentile of daily temperature in each month over the entire study period in each 

county as the threshold to define extreme heat exposure (a binary variable) based on previous 

extreme heat exposure health research.11,31–35 

As air pollution is related to both EHE and kidney disease,36 and previous studies have 

identified specific pollutants as confounders,37–39 we added PM2.5 and ozone, the two pollutants 

commonly occurring during the warm season, to our analysis as confounders. In addition, our 

data showed a 6-35% difference in the excess rate when running the regression models with and 

without adjustments for these two pollutants. We found more than a 15% difference in the risk 

estimation for most lag days (Table S1). We used daily PM2.5 and ozone concentrations 

simulations from the EPA's Community Multiscale Air Quality Modeling System (CMAQ).40 

CMAQ output represents volume-average pollutant concentrations for every 1-mile x 1-mile grid 

cell and vertical layer in the model domain. For each census tract, we determined the simulation 

grids of CMAQ data located in the area using the FIPS.names function in the rSPARCS package. 
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We then computed the average air pollution concentration across the simulation grids within the 

census tract. By geocoding the individual residential address of each case to the street level and 

assigning the exposures to each case, we obtained individual daily PM2.5 and ozone exposure 

estimates. 

Statistical analysis 

Our analysis focused on ED visits due to kidney disease in summer (June through August) 

and in the transitional months (May and September), as prior studies found stronger effects of 

extreme heat exposure on many health outcomes during these transitional months.41,42 Other 

studies on associations between extreme heat exposure and kidney disease included May and 

September as part of the warm season.15,43 We first drew a plot to present the overall relationship 

between continuous temperature, extreme heat exposure, and the number of renal ED visits over 

time. We also conducted a sensitivity analysis to fit the relationship between continuous 

temperature levels and risks of kidney disease (ORs) using the distributed lag non-linear model 

(DLNM). We then used a conditional logistic model to regress the outcome (i.e., the case/control 

indicator) against the extreme heat exposure while controlling for multiple confounders on 0-6 

lag days. Specifically, we controlled for humidity, holiday, and the concentration of PM2.5 and 

ozone on the same lag day as the extreme heat exposure. Odds ratios (ORs) were first estimated, 

then excess rate was calculated as (OR - 1) * 100%. We used excess rate because it removes the 
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baseline change and was commonly used in previous studies.43 We first ran an overall model 

including all cases in different seasons (i.e., May vs. June-August vs. September) and then a 

separate model for each kidney disease subtype in the warm season. Afterward, we examined the 

modifying effects of socio-demographic factors such as age, gender, race, ethnicity, and 

insurance status on the associations by calculating the P-value for the factor *exposure 

interaction term.25 Finally, stratified analyses were conducted among those factors with 

significant modification effects (P for interaction <0.05). In addition, we calculated the number 

of extreme heat exposure days within the week before the admission day for each participant and 

evaluated the potential dose-dependent effect on ED visits.  

Results 

We identified 1,114,322 ED visits due to kidney disease in New York state during the 

study period. The basic characteristics of our study population are described in Table 1. Figure 

S1 shows a plot over time of continuous temperature and the number of renal ED visits; overall, 

temperature and ED visit volume were highly correlated. As shown in Figure S2, we observed a 

monotonically increasing risk of renal ED visits as temperatures increase during the warm season 

(May to September). Figure 1 displays the excess rate of renal ED visits attributable to extreme 

heat exposure among New York residents. Depending on the day, we found that extreme heat 

exposure was associated with a 1.7% (95% CI: 0.9-2.5%) to 3.1% (95% CI: 2.3-4.0%) higher 
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risk of a renal ED visit during the week following the exposure (i.e., lag days 0-6). The impact of 

extreme heat exposure on renal ED visits increased from lag day 0 to lag day 2, weakening after 

the strongest effect on lag day 2. 

Figure 2 represents the excess rate of renal ED visits associated with extreme heat 

exposure in the transitional months and summer. Generally, the association between extreme 

heat exposure and ED was stronger in the transitional months (ERs ranged from 1.8% to 5.1%) 

than in summer (ERs ranged from 1.5% to 2.7%). In May, the association of extreme heat 

exposure with renal ED visits lasted for a whole week following the exposure, with the strongest 

association occurring on lag day 2 [ER = 5.1% (3.4-6.8%)]. In September, the association was 

strongest on lag day 0 [ER = 4.2% (2.6-5.8%)], but a statistically significant association was lost 

by lag day 4. During the summer months, the association of extreme heat exposure with renal ED 

admissions lasted for the whole week of observation, but the magnitude never surpassed the 

strength of association observed in May. 

The associations between extreme heat exposure and ED visits by kidney disease 

subtypes are presented in Table 2. We found that extreme heat exposure was significantly 

associated with increased ED visits due to AKI, kidney stones, UTIs, other kidney and ureter 

disorders, and other lower urinary tract disorders. The association was strongest for AKI and 

lasted for 4 days after the extreme heat exposure (ERs monotonically decreased from 16.5% on 
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lag day 0 to 4.3% on lag day 4). The association between extreme heat exposure and kidney 

stones persisted for the whole week (ERs ranged from 3.8% on lag day 6 to 8.2% on lag day 2). 

The association of extreme heat exposure with UTI was transient and lasted from lag day 0 to lag 

day 2. The association with other kidney and ureter disorders was observed 1 day later (lag day 

1) and lasted to lag day 3 (ERs ranged from 7.0% to 9.5%), while the association with other 

lower urinary tract disorders began on lag day 4 and ended on lag day 6 (ERs ranged from 1.8% 

to 2.9%). 

In Table 3, we present the modification effect of socio-demographic characteristics on 

the associations between extreme heat exposure and renal ED visits. Age and gender modified 

the association significantly. Results of stratification analyses showed that older individuals 

(aged >65 years) experienced more renal ED visits during the short-term period after extreme 

heat exposure (from lag days 0 to 3). However, for participants aged 18-65 and 5-18 years, 

extreme heat exposure was associated with excess risk of renal ED visits during the whole week 

from lag day 0 to lag day 6. Notably, we found that the association was stronger for male than 

female participants. Race, ethnicity, and insurance did not significantly modify the associations. 

To detect a potential dose dependence in the association between extreme heat exposure 

and renal ED visits, we assessed excess rates according to the number of days of extreme heat 

exposure during the previous week (Figure 3). The association between extreme heat exposure 
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and renal ED visits showed a dose-dependent trend from 1 to 5 days of exposure in the previous 

week. However, the trend did not persist beyond 5 days of exposure. 

Discussion 

Our analyses found that extreme heat exposure was significantly associated with excess 

ED visits related to kidney disease (1.7% to 3.1%) in the warm season (May through September), 

with a significant dose-dependent relationship. A prior systematic review and meta-analysis 

revealed that high temperature was associated with a 30% increase in kidney disease morbidity; 

specifically, heat stress/strain increased the risk of kidney disease by 16%.7 Similarly, Ogbomo 

et al. (2017) found that hospitalization rates for kidney disease in Michigan increased 

significantly (OR=1.14) during extreme-heat periods (daily mean temperature 95th percentile).9 

A retrospective cohort study in South Korea found that temperatures above the 90th and 95th 

percentiles were associated with an overall cumulative relative risk of 1.18-1.23 and 1.23-1.29, 

respectively, for ED admissions related to kidney disease compared to minimum morbidity 

percentiles.13 A time series analysis in Washington state found a 1.57-fold greater risk of hospital 

admissions related to kidney disease on a 99th percentile (36.2 ℃) heat day compared to days 

without extreme heat.10 In addition, Borg et al. (2017) in Australia and Chen et al. (2017) in 

Atlanta found that a 1℃ increase in daily minimum temperature or heatwave average 

temperature was associated with a 1.003 to 1.009 increase in ED admissions for kidney disease 
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overall and selected subtypes.6,17 In general, our study found a weaker association between 

extreme heat exposure and renal ED visits than in previous studies, which may be due to 

differences in study design, exposure definitions, and health outcome categorization. For 

example, we defined extreme heat exposure as when the daily temperature exceeded the 90th 

percentile temperature of that month over the entire study period in the county. Since there is no 

standard definition, researchers have previously elected to use the 90th, 95th, 97th, and 99th 

percentiles to define extreme heat exposure.7,9,10,13 Unsurprisingly, using a higher percentile to 

define extreme heat exposure tends to yield stronger associations.9 Furthermore, we exclusively 

focused on ED visits, but most prior studies used hospitalizations,9,10 which included more 

severe kidney disease cases, and thus the risks were higher. To our knowledge, we are the first to 

examine dose dependence in the association of extreme heat exposure with renal ED visits. The 

limited number of instances in which extreme heat persisted for 6-7 days may explain why 

excess rates of renal ED visits were not significantly associated with having 6 or 7 extreme heat 

days in the week preceding a visit. 

We also found that the association of extreme heat exposure with renal ED visits was 

detectable by lag day 0, was greatest on lag day 2, and remained statistically significantly for the 

whole week. These associations were also significantly stronger in transitional months, 

especially in May, than in summer. Similar to our results, Ogbomo et al. (2017) reported that 
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extreme heat exposure had the strongest association with kidney disease on the day of exposure 

and remained statistically significant for 1 to 5 subsequent days.9 Although the association of 

extreme heat exposure and kidney disease during transitional months and in summer has seldom 

been studied separately, our recent research found stronger associations between extreme heat 

exposure and pregnancy complications during transitional months than in summer.42 Kidney 

disease patients may be more prone to the effect of extreme heat exposure in transitional months 

due to their potential lack of physical and behavioral preparation or adaptations to sudden 

temperature changes (not using fans or air conditioners, more outdoor activities, and no early 

heat warning systems).41,44,45 

The specific kidney disease subtypes significantly associated with extreme heat exposure 

in this study included AKI, kidney stones, UTIs, and other kidney and lower urinary tract 

disorders. AKI had the highest risks (ER ranged from 4.3% to 16.5%), similar to previous 

studies.8,10,12,17 Our results were consistent with previous studies indicating that elevated 

temperature was mainly associated with AKI,6,8,10,12–14,17,19–21 kidney stones,22,23 and UTIs.6,12 

The exact biological mechanisms by which extreme heat exposure contributes to kidney 

disease are unclear. However, it is increasingly evident that, while the kidney has a major role in 

protecting the body from heat stress, it is also a target for heat stress-related injury.20 Heat stress 

can lead to increased core temperatures, dehydration, hypovolemia, blood hyperosmolality, and 
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electrolyte imbalance, which can lead to AKI13,46 and the formation of kidney stones and renal 

colic,47 and can facilitate the progression of localized infections to sepsis and shock.12 The 

adverse effects of vasopressin48 and the fructokinase system49 on renal tubules from extreme heat 

exposure can also lead to AKI.13 Meanwhile, increased circulating markers of inflammation and 

oxidative stress associated with elevated ambient temperatures may contribute to kidney disease 

exacerbation.50–52 Additionally, the medications commonly used to treat kidney disease, such as 

diuretics, may impair thermoregulatory responses and aggravate syndromes related to extreme 

heat exposure.9 

Our study found varied associations among populations of different ages and genders, 

i.e., older adults (aged >65 years) and males had slightly higher extreme heat exposure–

associated renal ED risks than other groups. Previous studies found that the groups vulnerable to 

extreme heat exposure varied depending on health outcomes, geographic regions, and type of 

diseases. However, most studies agree that older adults are most vulnerable to the renal effects of 

extreme heat exposure.9,53,54 Similar to our results, previous studies also found a higher risk of 

hospitalization and ED visits due to kidney disease in males than in females.16,43 

Our results indicate several implications: 1) everyone, especially those with pre-existing 

kidney disease, are recommended to avoid extreme heat exposure in summer and especially 

transitional months to prevent AKI and disease exacerbation; 2) the prevention and treatment of 
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heat-related kidney disease may be prepared during heatwaves and may last week-long; 3) the 

public health benefit of avoiding extreme heat exposure is potentially significant due to the high 

prevalence of kidney disease, the growing frequency of extreme heat exposure due to climate 

change, and the significant excess risk of extreme heat exposure related kidney disease; and 4) 

the real impacts of EHE on RD could be larger than what we found in the current study because 

we only included some severe cases (ED visits) and omitted more moderate and hospitalization 

cases. 

Our study has several strengths. First, we included a large sample size of over one million 

ED visits related to kidney disease. Furthermore, we compared the risks for renal ED visits by 

different lag days, and between summer and transitional months. Additionally, our detailed 

classification of kidney disease enabled us to assess the association of extreme heat exposure 

with specific subtypes as well as by socio-demographic characteristics. Finally, we used a case-

crossover design, which controls most interindividual confounders.  

However, several limitations should be considered when interpreting our results. First, 

the sample size may be a concern when evaluating the associations of extreme heat exposure 

with kidney disease subtypes. However, we collected multiple years of data from one of the 

largest states in the United States. Second, confounders may be a concern. However, we used the 

case-crossover design. Each case was self-compared regarding the exposure to control all 
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individually inherited confounders. We further controlled for air pollutants, humidity, and 

various time-related variables (holidays). Third, we exclusively considered ED visits in our case 

selection, limiting our analysis to the severe cases of kidney disease. However, this may be less 

of a problem for the kidney diseases studied as patients with AKI, kidney stones, and UTI may 

be more likely to present to an ED to get urgent medical care than other patients. Fourth, we did 

not evaluate individual exposure to heat or access to air conditioning. Future studies with more 

accurate measurements of individual exposures are needed to verify our findings. Finally, cases 

within a county were assigned the same temperature values for a specific day due to data limits, 

which likely resulted in exposure misclassification. However, we assigned weather data at the 

level of county (n = 62 in New York), which is more granular than the data from limited 

monitoring sites (n =14 in New York). The temperature variance across New York state was 

limited in our study (SD: 4.17-9.74 °F from month to month; <10% change). Thus, we assumed 

that the ambient temperature was not likely to change each day significantly within a much 

smaller area, i.e., within a county. In addition, using a case-crossover design, we compared 

extreme heat exposure on the case and control days, i.e., exposure was compared at different 

times but in the same residence. Therefore, if exposure misclassification occurs, the bias would 

be non-differential between the case and control days.25,55 
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In conclusion, extreme heat exposure was significantly associated with increased risk of 

ED visits related to multiple kidney disease types and displayed a dose-dependent relationship. 

This association lasted a week after exposure and was stronger during transitional months 

(especially May) than in summer. The kidney disease subtype showing the strongest association 

was AKI, although kidney stones and UTIs also showed strong associations. Age and gender 

may modify observed associations. The association of extreme heat exposure and kidney disease 

was observed not only in summer but also in transitional months.  

 

Supplementary Material 

Table S1. Excess rate (%) of emergency department visits due to renal diseases associated with 

extreme heat exposure, with and without adjusting for air pollutants. 

Figure S1. Overall relationship between temperature and the number of emergency department 

visits due to renal disease over time. 

Figure S2. Relationship between continuous temperature levels and risk of ED visits due to RD 

(ORs). 
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Figure Legends 

Figure 1. Excess rate (%) of emergency department visits due to renal diseases associated with 

extreme heat exposure 

Figure 2. Excess rate (%) of emergency department visit due to renal diseases associated with 

extreme heat exposure by month 

Figure 3. Excess rate (%) of emergency department visit due to renal diseases associated with 

the number of days during the past week exposed to extreme heat 
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Table 1. Basic characteristics of the study population in New York State 

Basic characteristics Number Proportion (%) 

Age   

<5 91,581 8.2 

5-18 444,034 39.8 

18-65 267,641 24.0 

>65 311,066 27.9 

Gender   

Female 679,307 61.0 

Male 435,003 39.0 

  Unknown 12 0.0 

Race   

African American 216,301 19.4 

Non- African American 898,021 80.6 

Ethnicity   

Hispanic 185,815 18.0 

Non-Hispanic 843,920 82.0 

Insurance   

Medicaid 109,845 9.9 

Self-pay 120,696 10.8 

Other insurance 883,781 79.3 

Renal diseases subtypes   

  Acute kidney disease  86,194 7.7 

  Chronic kidney disease 9,053 0.8 

  Lower urinary tract calculi 3,189 0.3 

  Nephritis and nephrosis 79,754 7.2 

Kidney stone 182,779 16.4 

Urinary tract infections  497,055 44.6 

Other kidney and ureter disorders 12,040 1.1 

Other lower urinary tract disorders 244,258 21.9 
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Table 2. Excess rate (%) of emergency department visit due to renal diseases associated with extreme heat exposure, by subtypes 

Lag 
days 

AKI CKD Lower urinary 
tract calculi 

Nephritis 
and 
nephrosis 

Kidney 
stone 

UTI Other kidney 
and ureter 
disorders 

Other lower 
urinary tract 
disorders 

Lag 0 16.5 (13.9, 
19.2) 

1.2 (-5.8, 8.7) 0.0 (-11.4, 12.9) -0.2 (-2.7, 
2.3) 

4.2 (2.5, 5.9) 2.4 (1.3, 3.5) 5.3 (-1.0, 
12.0) 

-3.4 (-4.9, -
2.0) 

Lag 1 17.8 (15.1, 
20.5) 

-1.1 (-8.1, 6.3) 0.2 (-11.1, 12.9) -2.1 (-4.5, 
0.4) 

7.3 (5.6, 9.1) 2.4 (1.3, 3.5) 7.0 (0.6, 13.9) -3.3 (-4.8, -
1.9) 

Lag 2 12.6 (10.0, 
15.2) 

-6.4 (-13.2, 
0.9) 

-4.4 (-15.5, 8.2) -0.4 (-2.8, 
2.2) 

8.2 (6.5, 
10.0) 

1.4 (0.3, 2.5) 9.5 (2.8, 16.5) 0.9 (-0.6, 2.4) 

Lag 3 8.6 (6.1, 11.2) -0.6 (-7.7, 7.1) -3.0 (-14.4, 9.8) -0.1 (-2.6, 
2.4) 

5.5 (3.8, 7.3) 0.9 (-0.2, 
2.0) 

8.6 (2.0, 15.6) 1.5 (0.0, 3.0) 

Lag 4 4.3 (1.9, 6.9) 0.6 (-6.7, 8.4) -3.6 (-15.1, 9.4) 0.4 (-2.1, 2.9) 5.4 (3.7, 7.2) 0.8 (-0.3, 
1.9) 

4.8 (-1.7, 
11.8) 

1.8 (0.3, 3.3) 

Lag 5 1.1 (-1.4, 3.5) -1.9 (-9.0, 5.8) -1.1 (-12.8, 12.2) 0.5 (-2.0, 3.0) 3.9 (2.2, 5.7) 1.6 (0.5, 2.7) 1.2 (-5.1, 8.0) 1.9 (0.4, 3.4) 
Lag 6 -0.9 (-3.2, 1.6) -3.9 (-10.9, 

3.5) 
-3.7 (-15.2, 9.4) 1.5 (-1.0, 4.1) 3.8 (2.1, 5.5) 0.9 (-0.2, 

2.0) 
3.5 (-2.9, 
10.3) 

2.9 (1.3, 4.4) 

Abbreviations: AKI, acute kidney disease; CKD, chronic kidney disease; UTI, urinary tract infections. 
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Table 3. Excess rate (%) of emergency department visit due to renal diseases associated with extreme heat exposure, effect modification, and 

stratification by socio-demographic characteristics 

Socio-demographic 
characteristics 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

Age        
<5 1.1 (-1.2, 3.4) 1.7 (-0.7, 4.1) -0.7 (-3.0, 1.7) -0.6 (-2.9, 1.8) 0.8 (-1.5, 

3.2) 
1.0 (-1.3, 
3.4) 

-1.5 (-3.8, 0.9) 

5-18 1.1 (-0.0, 2.3) 2.5 (1.3, 3.7) 3.6 (2.4, 4.8) 2.5 (1.3, 3.6) 2.2 (1.0, 3.4) 2.1 (0.9, 3.2) 2.0 (0.8, 3.1) 
18-65 2.8 (1.3, 4.2) 3.0 (1.5, 4.4) 4.7 (3.3, 6.2) 3.9 (2.4, 5.3) 4.1 (2.7, 5.6) 2.9 (1.5, 4.4) 3.0 (1.6, 4.5) 
>65 3.9 (2.6, 5.3) 3.4 (2.0, 4.8) 2.3 (0.9, 3.6) 1.8 (0.4, 3.1) 0.4 (-0.9, 

1.8) 
1.0 (-0.3, 
2.3) 

1.1 (-0.3, 2.4) 

P for interaction 0.005* 0.545 <0.001* 0.009* 0.001* 0.193 0.008* 
Gender        

Female 1.5 (0.5, 2.4) 1.7 (0.8, 2.7) 2.3 (1.4, 3.3) 1.6 (0.7, 2.6) 1.4 (0.5, 2.4) 1.6 (0.6, 2.5) 1.6 (0.6, 2.5) 
Male 3.5 (2.4, 4.7) 4.4 (3.3, 5.6) 4.4 (3.2, 5.6) 3.5 (2.4, 4.7) 3.1 (1.9, 4.2) 2.4 (1.2, 3.6) 1.9 (0.7, 3.1) 
P for interaction 0.005* <0.001* 0.004* 0.014* 0.021* 0.325 0.773 

Race        
African American 1.6 (0.1, 3.2) 1.8 (0.2, 3.4) 2.9 (1.3, 4.5) 1.7 (0.1, 3.3) 1.2 (-0.4, 

2.8) 
1.8 (0.2, 3.4) 0.9 (-0.6, 2.5) 

Non- African American 2.4 (1.6, 3.3) 3.0 (2.2, 3.9) 3.2 (2.3, 4.1) 2.5 (1.7, 3.4) 2.3 (1.4, 3.1) 1.9 (1.0, 2.8) 1.9 (1.0, 2.8) 
P for interaction 0.331 0.146 0.757 0.311 0.211 0.882 0.278 

Ethnicity        
Hispanic 1.1 (-0.5, 2.8) 3.2 (1.5, 4.9) 3.3 (1.6, 5.0) 3.1 (1.4, 4.8) 2.3 (0.6, 4.0) 2.4 (0.7, 4.1) 3.0 (1.3, 4.8) 
Non-Hispanic 2.4 (1.5, 3.3) 2.6 (1.7, 3.5) 3.1 (2.2, 4.0) 2.1 (1.2, 3.0) 2.0 (1.1, 2.9) 1.8 (0.9, 2.7) 1.5 (0.6, 2.4) 
P for interaction 0.192 0.561 0.953 0.434 0.841 0.742 0.200 

Insurance        
Medicaid 3.7 (1.6, 5.9) 4.2 (2.0, 6.4) 3.4 (1.2, 5.6) 3.3 (1.1, 5.5) 3.4 (1.2, 5.6) 2.3 (0.2, 4.5) 1.0 (-1.2, 3.2) 
Self-pay 1.6 (-0.5, 3.6) 0.8 (-1.3, 2.9) 2.1 (0.1, 4.3) 1.9 (-0.2, 4.1) 1.1 (-0.9, 

3.3) 
0.7 (-1.4, 
2.8) 

1.1 (-1.0, 3.2) 

Other insurance 2.2 (1.3, 3.1) 2.9 (2.0, 3.8) 3.2 (2.4, 4.1) 2.3 (1.4, 3.2) 2.0 (1.1, 2.9) 2.0 (1.1, 2.9) 1.9 (1.0, 2.8) 
P for interaction 0.307 0.065 0.599 0.638 0.315 0.487 0.623 
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