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A B S T R A C T   

While the health impacts of larger particulate matter, such as PM10 and PM2.5, have been studied extensively, 
research regarding ultrafine particles (UFPs or PM0.1) and particle surface area concentration (PSC) is lacking. 
This case-crossover study assessed the associations between exposure to PSC and UFP number concentration 
(UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013–2018. We 
used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days 
and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to 
identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art 
chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional 
logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for 
meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations 
between PSC and overall CVDs (lag0–lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7–1.2), and delayed 
and prolonged ERs%: 0.1–0.3 (95% CIs: 0.1–0.5) between UFPnc and CVDs (lag0-3–lag0-6). Exposure to larger 
PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 
0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5–17 
years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting 
effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator 
than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during 
cold days. Further studies are needed to validate our findings and evaluate the long-term effects.   

1. Introduction 

While relatively large particulate matter, such as PM10 (those smaller 
than 10 μm) and PM2.5 (those smaller than 2.5 μm), have been associ-
ated with adverse health outcomes in many prior studies (Li et al., 2017; 
Schraufnagel, 2020), few know that ultrafine particles (UFPs) may 
threaten human health even more so. Classically, PM has been classified 

by size, an important factor in determining its health impacts. Airborne 
particulates smaller than 100 nm or ≤0.1 μm in diameter are called UFPs 
or PM0.1 (these two terms are used interchangeably in this paper). 
Sources of UFPs include engine combustion, cooking, indoor heating, 
wood-burning, new particle formation and growth, and, more recently, 
products generated through nanotechnology (HEI Review Panel on Ul-
trafine Particles, 2013; Lippmann et al., 2013). Studies have shown that 
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exposure to ambient UFPs has detrimental effects on respiratory and 
cardiovascular systems (Ostro et al., 2015; US EPA, 2019; Schraufnagel, 
2020). Compared to larger particles, UFPs are of greater public health 
concern due to their 1) small size, which allows them to move into the 
lung interstitium and periphery easily, 2) large surface area to mass 
ratio, allowing them to effectively absorb trace metals/chemicals, and 3) 
ability to penetrate the alveoli and translocate to other organs via sys-
temic circulation quickly (HEI Review Panel on Ultrafine Particles, 
2013; Chen et al., 2020; Schraufnagel, 2020). 

There is mounting evidence connecting the adverse health effects of 
PM2.5 to cardiovascular diseases (CVDs). However, fewer studies have 
examined the CVD effects of UFPs (Brook et al., 2010; Franck et al., 
2011; Liu et al., 2013; Du et al., 2016; Schraufnagel, 2020). In addition, 
among the few UFP studies, UFP number concentration (UFPnc) was 
found to be associated with multiple CVDs, such as ischemic heart dis-
eases (IHDs), stroke, hypertension, myocardial infarction (MI), and 
heart failure, but not found in PM2.5 or PM10 (Andersen et al., 2010; Li 
et al., 2017; Downward et al., 2018; Chen et al., 2020). However, despite 
the rapid growth of published studies on UFPs over the past decade, the 
evidence for the associations between UFP exposure and cardiovascular 
effects remains inconclusive due to the paucity of epidemiologic studies 
in this area, exposure misclassification, and lack of standard metrics. 

Most previous studies assessed the effect of UFPs on mortality 
(Janssen et al., 2013; Lanzinger et al., 2016) or respiratory diseases 
rather than on CVD, although CVD is the leading cause of death in the 
US, leading to 659,000 deaths (1 in 4) each year (Centers for Disease 
Control and Prevention, 2020). In addition, heart disease costs the US 
approximately $363 billion per year (Aparicio et al., 2021), and CVD is 
the top cause of hospital admissions in New York State (NYS). Unfor-
tunately, there is currently no network of UFP monitors in any country. 
As a result, almost all published papers in this area used UFP measure-
ment data from one or very few monitoring sites, usually located in 
urban areas. Since UFPs have high spatial variability, the limited num-
ber of special monitoring sites introduces significant exposure misclas-
sification problems and limited generalizability for studies utilizing 
them. 

Furthermore, fine particle metrics other than particle number con-
centration (PNC) have rarely been used to assess their health effects in 
prior research. For instance, Chen et al. (2020) found that particle sur-
face area concentration (PSC) was associated with a higher risk of MI 
than UFPnc, and PSC may be a more sensitive and biologically relevant 
metric. Finally, previous studies have not considered the interaction of 
meteorological and seasonal factors with UFPs on CVD, although these 
factors are considered important effect modifiers (Sioutas et al., 2005). 

This study helps fill the knowledge gaps described above by assessing 
the association between PSC and UFPnc on hospital admissions for 
overall CVDs and several major CVD subtypes in NYS using simulated 
data generated by the innovative GEOS-Chem-APM model. Finally, we 
estimated the effects of PSC on CVD across lag days, socio- 
demographics, seasons, and meteorological factors. 

2. Methods 

2.1. Study design and health outcomes 

We used a time-stratified case-crossover design where days of 
admission are defined as case days while identical day of the week in the 
same calendar month are defined as control days (Zhang et al., 2018; 
Rich et al., 2019). The exposure level is compared between the case and 
control days for the same person, thereby controlling for personal con-
founders such as sex, age, family history of heart disease, and genetic 
variations. In addition, holidays, seasons, and long-term secular trends 
are important confounders in short-term air pollution studies as they can 
affect hospital visits. For example, hospital admissions are more 
frequent on Mondays. This time-stratified design will control for various 
time-varying variables, including the effects of weekdays, weekends, 

holidays, seasons, and long-term trends. We obtained CVD-related hos-
pital admissions data (2013–2018) from the New York State (NYS) 
Statewide Planning and Research Cooperative System (SPARCS), a 
legislatively mandated database that requires all hospitals in NYS to 
report every hospital admission and covers over 95% of NYS hospital 
records (SPARCS, 2022). We defined CVDs using principal diagnosis and 
the International Classification of Diseases (ICD) 9: 390–459 and 
ICD-10: I00–I99. In addition, we included the following major CVD 
subtypes for stratified analysis: 1) cerebrovascular diseases (ICD-9: 
430–438, ICD-10: I60–I69), 2) hypertensive diseases (ICD-9: 401–405, 
ICD-10: I10–I16), 3) IHDs (ICD-9: 410–414 and ICD-10: I20–I25), 4) 
acute rheumatic fevers (ICD-9: 390–392 and ICD-10: I00–I02), 5) 
chronic rheumatic heart diseases (ICD-9: 393–398 and ICD-10: I05–I09), 
and 6) diseases of pulmonary circulation (ICD-9: 415–417 and ICD-10: 
I26–I28). All hospital admissions were geocoded to the residential 
street level, assigned to one of the GEOS-Chem simulation grids, and 
matched to the exposure variables. 

2.2. PSC and UFP Simulation Model and Data 

Due to the absence of a statewide network of PSC and UFP monitors, 
this study relied on particle size distribution simulations generated by 
GEOS-Chem-APM, a state-of-the-art global chemical transport model 
equipped with a size-resolved advanced particle microphysics (APM) 
module (Yu and Luo, 2009). Similar to an emissions-based model with a 
4-km spatial scale used by Ostro et al. (2015), our GEOS-Chem-APM 
model is a global 3-D model of atmospheric composition (Bey et al., 
2001) and is continuously being improved (Martin et al., 2003; Evans 
and Jacob, 2005; Pye and Seinfeld, 2010; Murray et al., 2012; Keller 
et al., 2014; Holmes et al., 2019; Luo et al., 2020). The APM model has 
the following relevant features to accurately simulate particle size dis-
tributions: (1) 40 bins to represent secondary particles with high size 
resolution for the size range important for the growth of nucleated 
particles to CCN sizes (Yu and Luo, 2009); (2) a state-of-the-art Ternary 
Ion mediated Nucleation (TIMN) mechanism (Yu et al., 2018) and 
temperature-dependent organics-mediated nucleation (Yu et al., 2017); 
(3) explicit kinetic condensation of both H2SO4 and low volatile organic 
gases onto particles (Yu, 2011); and (4) explicit resolution of the coating 
of secondary species on primary particles. GEOS-Chem-APM has been 
used in several studies, and modeling results have been evaluated 
against a large set of land-, ship-, aircraft-, and satellite-based mea-
surements (Yu and Luo, 2009; Yu et al., 2010; Yu, 2011; Yu et al., 2015; 
Luo and Yu, 2011; Ma et al., 2012; Ma and Yu. 2014; Williamson et al., 
2019). 

In the present study, we ran GEOS-Chem-APM over a nested domain 
in the northeastern US with a 0.3125◦ × 0.25◦ horizontal resolution 
(approximately 17 miles × 17 miles). PSC and UFPnc were calculated 
based on simulated particle size distribution (see Fig. 1 in Results for an 
example). With this resolution, the model can detect regional “blooms” 
of UFPs and UFP pollution associated with traffic emissions in major 
urban areas (such as New York City, Buffalo, and Rochester). While the 
model cannot resolve near roadway UFP, it can consider the mean 
elevated UFP exposure in major urban areas. 

2.3. Statistical analysis 

We used conditional logistic regression to compare the exposure 
levels between the case and control days for each case and calculated the 
exposure ratio for all the cases while controlling for three major cate-
gories of covariates (meteorological factors, air pollutants, and time- 
varying variables). Specifically, these categories of the covariates 
include ambient temperature, relative humidity, PM2.5, O3, NH3, and 
time-varying variables (days of the week, holidays, season, and long- 
time trend). As each case is compared with themselves on control days 
in the case-crossover design, all inherited personal confounders such as 
sex, age, family history of heart disease, and genetic variations are 
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automatically adjusted. In addition, since each case’s exposure days and 
control days were compared within the same month of the same year, 
various time-varying variables, including long-term trends, have been 
controlled in this time-stratified case-crossover design. We did not 
control for other air pollutants in the model, such as NO2 or SO2, because 
they are highly correlated with UFPs (correlation coefficients >75%). 
We also conducted several stratified analyses for PSC by disease subtype, 
season, temperature, relative humidity (RH), age, ethnicity, and race. As 
multi-day lag is a more sensitive and robust indicator than single-day lag 
according to prior literature (US EPA, 2019) and our data, we presented 
the results from multi-day lags as the primary tables/figures. Multi-day 
lag was calculated using the moving average of PSC and UFPnc, i.e., the 
sum concentrations of the daily means of these exposures on multiple 
days (0–6) divided by total days (US EPA, 2019). Single-day lag analysis 
results are provided in the supplemental materials as the sensitivity 
analyses. The excess risk (ER%) per each interquartile range (IQR) in-
crease was calculated as (exp (β*IQR)-1)*100%, where beta was the 
regression coefficient. All analyses were conducted using R 4.1.2. 

3. Results 

Particles in the atmosphere have different sizes, and particles of 
different sizes are dominated by different particle numbers, surface 
areas, and mass concentrations. The size distributions of particles in NYS 
are explicitly simulated using the GEOS-Chem-APM model described 
earlier. Fig. 1 gives an example of normalized particle number, surface 
area, and mass size distributions at Queens College in New York City. 
Fig. 1 describes the fractions of number, surface area, and mass in the 
different size ranges of particles (<0.01, 0.01–0.1, 0.1–0.5, 0.5–2.5, and 
2.5–10 μm). UFPs (<0.1 μm) account for 87% of PNC, 21% of PSC, and 
6% of particle mass concentrations. Both PSC and mass concentrations 
are dominated by particles smaller than 0.5 μm in diameter. Unfortu-
nately, no direct measurements of PSC are available for us to compare 
with model simulations. For PNC, continuous measurements are avail-
able at a monitoring site in Pinnacle State Park (PSP) (77.21◦ W, 42.10◦

N) in New York State. The PSP is in a remote area with minor influence 
from local sources and thus is suitable for comparison with the modeled 
value representing the average concentration over the 17 miles × 17 
miles area containing the measurement site. Supplement 1 compares 
simulated total PNC with those observed at the PSP site. The model 
reasonably captures the observed absolute values and daily variations at 
the site, with a normalized mean bias (NMB) of − 7.2% and a correlation 
coefficient of 0.65. 

Table 1 describes the demographic profile of the study population, i. 
e., all the CVD cases included in this study (n = 1,773,474). A majority 
(55.2%) of cases were older adults (65+ years old, mean = 65.56 years), 
11.4% were Hispanic, and 22.4% were African American. In addition, 
4.2% of cases had no insurance, and 9.9% had Medicaid insurance. 

The associations between each IQR increase in PSC or UFPnc, and the 
ER for overall CVDs by multi-day and single-day lags are presented in 
Table 2. Overall, we found that the corresponding risks of PSC and 
UFPnc on overall CVDs were higher on multi-day lag than on single-day 
lag. For example, the highest CVD risks (ERs (95%CI)) occurred imme-
diately after PSC exposure (lag 0 and 0–1) were 0.9% (0.7%–1.2%) and 
0.9% (0.6%–1.2%), respectively. The significantly positive associations 
occurred in all multi-day lags (Table 2). For UFPnc, the delayed highest 

Fig. 1. 2013–2018 mean normalized particle size 
distributions (PSD) in terms of number (N, in #/cm3), 
surface area (S, in μm2/cm3), and mass (M, in μg/m3) 
concentrations in an urban site (Queen College, New 
York City). The total N, S, and M are 9665 #/cm3, 
154 μm2/cm3, and 8.2 μg/m3, respectively. The 
fractions of N, S, and M in the different size ranges 
(<0.01, 0.01–0.1, 0.1–0.5, 0.5–2.5, and 2.5–10 μm) 
are given in the inserted table. UFPs (<0.1 μm) ac-
count for 87% of particle number concentration, 21% 
of particle surface area, and 6% of particle mass 
concentrations.   

Table 1 
Demographic profile of hospital admissions of all cardiovascular diseases in 
NYS, 2013–2018.   

Population (N) % of Total 

Sex 
Female 847,450 49.5 
Male 864,728 50.5 
Unknown 29 0.0 

Age (years) 
0-4 4,975 0.3 
5-17 16,862 1.0 
18-64 782,068 45.7 
>64 908,302 53.0 

Race 
White 988,037 57.7 
Black/African American 386,306 22.6 
Native American/Alaskan Native 4,762 0.3 
Asian 42,937 2.5 
Native Hawaiian/Other Pacific Islander 1,295 0.1 
Unknown 288,870 16.9 

Ethnicity 
Spanish/Hispanic Origin 188,737 11.0 
Not of Spanish/Hispanic Origin 1,459,742 85.3 
Unknown 63,728 3.7 

Insurance 
Self-Pay 81,075 4.7 
Workers’ Compensation 4,443 0.3 
Medicare 846,151 49.4 
Medicaid 177,436 10.4 
Insurance Company 399,094 23.3 
Blue Cross 176,798 10.3 
Unknown 13,612 0.8 
Other Insurance 13,598 0.8  
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risks were observed from lag 0–3 to lag 0–6 days (ERs: 0.3%, 95% CIs 
ranged 0.1%–0.5%). For single-day lags, the highest risks for PSC were 
found on the same day (ER: 0.9%, 95% CI: 0.7%, 1.2%), but 2–3 days 
later (ER: 0.2%, 95% CI: 0.1%, 0.4%) for UFPnc. 

We compared six CVD subtypes in relation to PSC and UFPnc using 

multi-day lags, which were significantly associated with cerebrovascular 
(stroke), hypertensive disease, and IHDs, but not with acute rheumatic 
fever, chronic rheumatic heart disease, and disease of pulmonary cir-
culation (Table 3). In general, surface area was associated with imme-
diately elevated risk of stroke (ERs (lags: 0, 0–1, 0–2): 1.1%–1.4%, 95% 
CIs: 0.5%–2.2%), and IHD (ERs (lags: 0, 0–1): 0.7%–0.8%, 95%CIs: 
0–1.6%). The adverse effects of PSC on hypertensive admissions lasted a 
week (ERs (lags: 0, - 0–6): 0.7%–0.8%, 95%CIs: 0.1%–1.5%). In addi-
tion, UFPnc was statistically associated with a week-long elevated risk of 
hypertensive diseases (ERs (lag 0 – 0-6): 0.4%–0.9%; 95% CIs: 0–1.4%) 
with the highest risk on lag 0–3 (0.9%) and lag 0–4 day (0.8%). 

In Fig. 2, the ERs associated with each IQR increase in surface area 
(PSC) with the CVDs by socio-demographical characteristics are 
described across multi-day lags. Generally, the associations of PSC and 
CVDs among different demographical groups were strongest on lag 
0 and not statistically significant (P for interaction >0.05). Interestingly, 
we found that children (5–17 years) were at the highest risk (ER: 2.4%, 
95% CI: 0.6%, 4.2%). Compared to their counterparts, males (ER: 1.1%, 
95% CI: 0.8%, 1.4%), non-black individuals (ER: 1.2%, 95% CI: 0.9%, 
1.5%), and non-Hispanic individuals, (ER: 1.0%, 95% CI: 0.7%, 1.3%) 
had higher risks. 

Fig. 3 and Supplement Table 2 shows the ERs of PSC-CVD associa-
tions for different seasons per IQR increase in multi-day lag exposure. 
The interaction effects were statistically significant for all multi-day lags 
over a week (P for interaction <0.05). Statistically significant elevated 
ERs were observed for all seasons on lag 0 day (ER% (95% CI%) ranged 
from 0.4 (0–0.8) to 1.6 (1.2–2). However, the effects of PSC on CVD in 
winter were the strongest (ERs (lag 0–1, 0–2): 1.7%, 95% CI: 1.2–2.2), 
followed by fall (ER%s (0, 0–1): 1.2–1.3, 95%CI%: 0.8–1.7). Winter and 
fall seasons had significantly lasting CVD effects for the entire week after 
exposure. The abrupt transition between summer and fall in Fig. 3 is an 
artifact of putting the seasons in this order. This happened to be the 
pattern across lag days in the different seasons and are not comparable, 
as different lag days between seasons (i.e., “0–6” lag in Summer vs. “0” 
lag in Fall) are not temporally connected. 

The interaction effects between temperature or relative humidity 
and PSC on CVDs are presented in Fig. 4 and Supplement Table 3. The 
interaction effects were consistently significant for temperature and 
relative humidity across all lag days (P-value for interaction <0.001). 
Compared with temperature >90th, we found that PSC increased risks of 
CVDs when the temperature was <90th (ER%s range: 0.7–1.4, 95%CI%: 
0.3–1.7), with the risks declining over lag days. Similarly, the CVD risks 
of PSC were higher when the relative humidity was <90th (ER% range: 
0.4–0.7, 95%CI%:0.1–0.9). 

Table 2 
Association between each IQR increase in particle surface area or number con-
centrations of ultrafine particles and the excess risk (%) for hospital admissions 
due to cardiovascular diseases, NYS, 2013–2018.   

Case(N) Multi-day lags Single-day lags 

Lag IQR Excess 
Risk (%) 

Lag IQR Excess 
Risk (%) 

Surface 
Area 

1,712,207 0 213 0.9 (0.7, 
1.2)* 

0 213 0.9 (0.7, 
1.2)* 

1,711,284 0–1 193 0.9 (0.6, 
1.2)* 

1 212 0.5 (0.2, 
0.7)* 

1,710,171 0–2 173 0.8 (0.5, 
1.1)* 

2 213 0.1 
(− 0.1, 
0.4) 

1,709,003 0–3 159 0.7 (0.4, 
1.0)* 

3 213 − 0.1 
(− 0.3, 
0.2) 

1,707,810 0–4 151 0.6 (0.3, 
0.9)* 

4 213 − 0.1 
(− 0.3, 
0.2) 

1,706,895 0–5 144 0.4 (0.1, 
0.7)* 

5 213 − 0.4 
(− 0.6, 
− 0.2) 

1,706,015 0–6 139 0.4 (0.1, 
0.7)* 

6 213 0.0 
(− 0.3, 
0.2) 

Ultrafine 
Particle 

1,712,207 0 1950 − 0.1 
(− 0.2, 
0.1) 

0 1950 − 0.1 
(− 0.2, 
0.1) 

1,711,284 0–1 1798 0.0 
(− 0.2, 
0.1) 

1 1950 0.1 
(− 0.1, 
0.2) 

1,710,171 0–2 1680 0.1 (0.0, 
0.3)* 

2 1950 0.2 (0.1, 
0.4)* 

1,709,003 0–3 1601 0.3 (0.1, 
0.4)* 

3 1950 0.2 (0.1, 
0.4)* 

1,707,810 0–4 1543 0.3 (0.1, 
0.5)* 

4 1950 0.0 
(− 0.1, 
0.2) 

1,706,895 0–5 1500 0.3 (0.1, 
0.5)* 

5 1950 0.1 
(− 0.1, 
0.2) 

1,706,015 0–6 1466 0.3 (0.1, 
0.5)* 

6 1950 0.0 
(− 0.1, 
0.2)  

Table 3 
Multi-day excess risk (%) associated with each IQR increase in particle surface area or number concentrations of ultrafine particles by subtypes of CVD admissions in 
NYS, 2013–2018.  

Lag Cerebrovascular (N =
210,427) 

Hypertensive Disease (N 
= 378,479) 

Ischemic Heart Disease 
(N = 223,589) 

Acute Rheumatic 
Fever (N = 415) 

Chronic Rheumatic Heart 
Disease (N = 1,798) 

Diseases of Pulmonary 
Circulation (N = 44,896) 

Surface area 
0 1.1 (0.4, 1.8)* 0.7 (0.3, 1.2)* 0.7 (0.0, 1.3)* − 12.0 (− 24.8, 3.2) − 0.1 (− 6.9, 7.2) 0.0 (− 1.6, 1.5) 
0–1 1.1 (0.4, 1.9)* 0.7 (0.1, 1.2)* 0.8 (0.1, 1.6)* − 17.8 (− 30.8, − 2.3) − 0.6 (− 8.3, 7.8) 0.4 (− 1.3, 2.1) 
0–2 1.4 (0.5, 2.2)* 0.7 (0.1, 1.3)* 0.6 (− 0.2, 1.4) − 7.6 (− 22.2, 9.9) 0.00 (− 8.2, 8.9) 0.10 (− 1.7, 2.0) 
0–3 1.0 (0.1, 1.8)* 0.8 (0.1, 1.4)* 0.2 (− 0.6, 1.0) − 3.8 (− 19.5, 15.0) 0.3 (− 8.2, 9.5) 0.12 (− 1.8, 2.1) 
0–4 0.8 (− 0.1, 1.8) 0.8 (0.2, 1.5)* − 0.1 (− 1.0, 0.8) − 4.7 (− 21.1, 15.0) 1.8 (− 7.1, 11.6) − 0.3 (− 2.2, 1.7) 
0–5 0.5 (− 0.4, 1.5) 0.7 (0.0, 1.3)* − 0.2 (− 1.1, 0.8) − 3.8 (− 21.0, 17.1) 4.6 (− 4.9, 15.1) − 0.6 (− 2.7, 1.4) 
0–6 0.0 (− 1.0, 1.0) 0.8 (0.1, 1.5)* 0.0 (− 0.9, 1.0) − 2.7 (− 21.2, 20.3) 4.7 (− 5.3, 15.6) − 0.4 (− 2.5, 1.8) 
Ultrafine Particle 
0 0.2 (− 0.2, 0.6) − 0.3 (− 0.6, 0.0) 0.4 (0.0, 0.8)* − 2.8 (− 10.8, 5.9) − 1.7 (− 5.6, 2.4) − 0.2 (− 1.1, 0.6) 
0–1 0.3 (− 0.2, 0.7) − 0.4 (− 0.8, − 0.1) 0.5 (0.1, 1.0)* − 3.4 (− 12.0, 6.0) − 0.9 (− 5.4, 3.8) − 0.1 (− 1.1, 0.8) 
0–2 0.2 (− 0.3, 0.6) − 0.3 (− 0.7, 0.0) 0.7 (0.2, 1.2)* − 6.1 (− 15.2, 3.9) 1.6 (− 3.6, 7.0) 0.3 (− 0.7, 1.4) 
0–3 0.2 (− 0.3, 0.7) − 0.2 (− 0.5, 0.2) 0.9 (0.4, 1.4)* − 7.3 (− 17.0, 3.5) 2.3 (− 3.3, 8.2) − 0.1 (− 1.2, 1.1) 
0–4 0.3 (− 0.2, 0.9) − 0.2 (− 0.6, 0.2) 0.8 (0.3, 1.4)* − 7.3 (− 17.7, 4.3) 3.0 (− 2.9, 9.3) − 0.9 (− 2.1, 0.4) 
0–5 0.3 (− 0.3, 0.9) − 0.2 (− 0.6, 0.2) 0.7 (0.1, 1.3)* − 8.5 (− 19.1, 3.6) 1.4 (− 4.7, 7.9) − 0.8 (− 2.0, 0.5) 
0–6 0.5 (− 0.1, 1.1) − 0.4 (− 0.8, 0.1) 0.6 (0.0, 1.2)* − 8.5 (− 19.6, 4.3) 2.0 (− 4.5, 8.8) − 1.0 (− 2.3, 0.3)  

S. Lin et al.                                                                                                                                                                                                                                       



Environmental Pollution 310 (2022) 119795

5

4. Discussion 

4.1. Effects of PSC or UFPnc on CVDs by lag days 

Our study found an immediate and strongest positive association 
between PSC and overall CVDs on the day of exposure and one day after. 
We also found a delayed adverse effect of UFP on CVD. Both PSC and 
UFP’s effects lasted for a week after exposure. Consistent with our 
findings, the only study regarding PSC on CVD by Chen et al. (2020) 
found that exposure to PSC was significantly associated with increased 
risks of myocardial infarction (MI) from lag 2–6, and lasted for two 
weeks, in Augsburg, Germany during 2005–2015. Compared to PSC, the 
authors also found that UFPs (10–100 nm) showed a significantly 
delayed effect on lag 6. In addition, Abrams et al. (2017) reported that 
exposure to ambient fine particulate matter increased emergency 
department visits for multiple cardiorespiratory outcomes during 0–2 

moving average of lag days after exposure in Georgia, US. In summary, 
recent multicity studies that examined the lag structure of fine 
particles-CVD associations generally support the immediate effect of 
PM2.5 on cardiovascular mortality (Janssen et al., 2013; Lippmann et al., 
2013; Samoli et al., 2013; Lanzinger et al., 2016; Stafoggia et al., 2017), 
but also provide some evidence that associations may exist for exposures 
averaged over longer durations (Hertel et al., 2010; Samoli et al., 2013). 

Aligning with the lasting effects of fine particles we found, Andersen 
et al. (2010) examined the relationship between UFP exposure measured 
at two urban monitoring sites and 7,485 incident hospital admissions for 
stroke in Copenhagen, Denmark (1995–2003). They found significant 
increases in the odds of hospital admissions for ischemic and mild stroke 
following UFP exposures over the previous five days (lag 0–4). In 
addition, Franck et al. (2011) observed positive associations between 
short-term UFPnc exposure (measured by a single fixed-site monitor) 
and emergency calls for hypertensive crises in Leipzig, Germany. The 

Fig. 2. Multi-day excess risks (%) of cardiovascular admissions associated with each IQR increase in particle surface area by different social demographics (age, 
ethnicity, race, and sex), NYS 2013–2018. 

Fig. 3. Multi-day excess risk (%) of overall cardiovascular admissions associated with each IQR increase in particle surface area by season, NYS 2013–2018.  
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authors observed positive associations at lag 2–9 days out of 0–10 days. 
Another interesting finding from this study is that multi-day lags moving 
average may be a more endpoint-sensitive indicator representing longer 
time or cumulative exposure. Studies that compared single-day and 
multi-day lag periods observed stronger associations using multi-day, 
aggregate CVD hospital admissions, and ED visits (Qiu et al., 2013; 
Talbott et al., 2014). Similarly, Liu et al. (2013) in Beijing, China re-
ported a 7.2% (95% CI: 1.1, 13.7) increase in CVD ED visits per 9, 
040-particle/cm3 increase using an 11-day moving average of UFPnc 
concentrations. In contrast to multi-day lags, single-day lags demon-
strate the short-term or independent effect of each day’s exposure. Our 
findings may highlight the importance of using both single-day and 
multi-day lags to demonstrate the short-/longer-term effects of UFP and 
identify the days with the highest effect on clinical facility (beds and 
care) preparation and public health preparedness. Additionally, there is 
always a lag period between the disease onset (for which we don’t have 
data) and admission date. Therefore, up to a week may be needed to 
observe an admission episode. Unfortunately, no studies used both lag 
indicators to compare to our findings. 

It is biologically plausible that exposure to UFP may trigger the onset 
of CVD in the short term, as demonstrated by multiple studies. The 
potential biological mechanisms include that UFP exposure may activate 
neural reflexes in the respiratory tract, provoke an imbalance of the 
autonomic nervous system, and initiate cardiac arrhythmias or MI 
(Brook et al., 2010). Several panel studies have also reported the asso-
ciations between UFP and decreased heart rate variability within hours 
(Rich et al., 2012; Peters et al., 2015; Breitner et al., 2019) or even 
minutes (Pieters et al., 2015) of increased exposure. In addition, 
short-term exposure to UFPs may cause systemic oxidative stress and 
inflammation, leading to impaired vascular function and thrombosis 
(Brook et al., 2010). A panel study of cardiac patients in Rochester, New 
York, observed positive associations between UFP exposure in the pre-
vious 12 h and increased fibrinogen levels (Croft et al., 2017). 

4.2. Comparing particle surface area with UFP number concentration on 
CVD 

Our study also found that PSC was a more sensitive indicator (with 
consistently higher excess CVD risks across all multi-day lags) than 
UFPnc. Although UFPs accounted for 87% of UFPnc and 21% of PSC in 
our study, the broad range of PSC for all particles may increase the 
sensitivity to identify the health risks than UFPnc in our study. Consis-
tently, Chen et al. (2020) also found that the effects of PSC and particle 
length concentration (PLC) were stronger and more precise than the 
UFPnc and remained similar after adjustment for PM or gaseous 

pollutants. A prior study in Augsburg, also in line with our findings, 
found stronger positive associations of inflammatory biomarkers in the 
blood with PSC and PLC than for UFPnc (Rückerl et al., 2016). Addi-
tionally, Hennig et al. (2018) reported that UFPnc (50–500 nm) and 
lung-deposited PSC were positively associated with overall cardiovas-
cular mortality in Germany. 

Several toxicological studies also suggested that PSC might be the 
most biologically relevant and effective dose metric for acute nano-
particle toxicology in the lung (Sager and Castranova, 2009; Schmid and 
Stoeger, 2017). This may be explained because the particle surface is 
where components of UFP interact directly with bodily fluids and tissue 
(Schmid and Stoeger, 2017). Greater PSC may increase the surface 
reactivity and thus the oxidative stress and pro-inflammatory effects 
(Hussain et al., 2009). Furthermore, Henning et al. (2018) stated that 
PSC distributions could be directly linked to emission sources and thus 
may be used for planning potential public health interventions. In other 
words, compared to particle mass and number, PSC could be used as an 
alternative metric that constitutes an integrated marker of reactive 
particle surface and deposition efficiency, which likely serves as a better 
indicator of understanding the biological mechanisms by which the 
inhalation of particles leads to health outcomes. 

4.3. PSC/UFPnc – CVD associations by CVD subtype groups and SES 

Our study found that exposure to large PSC was associated with 
immediate adverse effects and hospital admissions due to stroke, hy-
pertension, and IHD. UFP’s effect on IHD also occurred immediately but 
was higher in the later lags. Both PSC-hypertension and UFP-IHD asso-
ciations persisted for an entire week. However, there are no significant 
effects from PSC and UFPs on acute rheumatic fever, chronic rheumatic 
heart disease, and diseases of pulmonary circulation. In line with our 
findings, Abrams et al. (2017) reported that oxidative potential dithio-
threitol exposure was associated with ED visits for multiple cardiore-
spiratory outcomes, including IHD, on the same day to two days after 
exposure in Atlanta, Georgia, US. In addition, an in-home survey in 
near-highway and urban background neighborhoods in and near Boston 
(MA, USA) found that time activity adjusted annual average UFPnc ex-
posures were associated with stroke, IHD, and hypertension after con-
trolling for BMI (Li et al., 2017). Multiple PM2.5 studies summarized by 
the US EPA (2019) also indicated that the increased risk of cerebro-
vascular disease or stroke related to PM2.5 exposure was rapid (on the 
same day) and had higher magnitudes than IHD (2 days after PM2.5 
exposures and lower risks). A consistent finding was that the cardio-
vascular effects of pollution were much stronger in the Northeast than in 
other regions. In addition, PM0.1 exposure was associated with an 

Fig. 4. Multi-day excess risk (%) of cardiovascular admissions associated with each IQR increase in particle surface area by temperature and relative humidity (RH), 
NYS 2013–2018. 
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increased incidence of heart failure, acute MI, ischemic and thrombotic 
stroke, and increased blood pressure even after controlling for PM2.5 and 
NO2 (Andersen et al., 2010). Unexpectedly, we found a few protective 
associations between PSC or UFPs and CVD subtypes. These may be 
explained by CVD subtype differences in susceptibility (Brook et al., 
2010; Ostro et al., 2015; US EPA, 2019), chance findings due to small 
sample sizes in certain groups, and different biological mechanisms (HEI 
Review Panel on Ultrafine Particles, 2013; US EPA, 2019). 

We did not find significant differences in the PSC-CVD associations 
by different strata of various sociodemographic (SES) variables. One 
interesting finding is that young children aged 0–4 and 5–17 years old 
showed the highest CVD risk per each IQR change of PSC for all multi- 
day lags compared to adult groups. Unfortunately, we could not find 
any studies that evaluated the disparities of PSC-CVD associations by 
SES. Children are usually more vulnerable to air pollution’s health ef-
fects, which may begin in utero and produce lifelong consequences 
(Schraufnagel et al., 2019). As CVD is quite rare among children, the 
highest CVD risk we found among them may be explained by a selected 
group of children with serious pre-existing health conditions. This 
finding demands further investigation. 

4.4. UFP-CVD associations by seasonality and temperature 

We found a significant seasonal difference in PSC-CVD relationships, 
i.e., the adverse effects of PSC on CVDs were approximately two-fold on 
most multi-day lags in the fall and winter as those in the spring or 
summer. Consistently, we also found that the PSC-CVD associations 
were stronger on the days with lower temperature and lower humidity 
than on hot days with high humidity. Another interesting finding is that 
an excess CVD risk occurred immediately (on the same day of PSC 
exposure) in summer and spring without delayed effects. This is 
consistent with elevated local UFP levels from traffic which are higher 
during colder temperatures, mainly due to lower boundary layer height 
and reduced mixing in the fall and winter (Guo et al., 2016). It should be 
noted that regional nucleation events (or “blooms”), which generally 
occur in warm weather, can also increase UFP concentrations in remote 
areas but only contribute to UFP abundance in urban areas with high 
population density and traffic emissions. The GEOS-Chem-APM model 
employed for this study considers regional “blooms” and local traffic 
contributions to daily variations of UFP in different parts of New York 
State. 

Previous studies found that when cold weather or temperature in-
creases, UFP and other gaseous pollutant emissions can increase, 
matching our findings (Mathis et al., 2005). Although UFPnc near busy 
roads may mainly depend on emissions patterns, the diurnal or seasonal 
temperature cycle can also strongly modify the UFPnc and their distri-
butions (Charron and Harrison, 2003; Kuhn et al., 2005). Lower ambient 
temperatures favor the formation of higher numbers of the smallest 
particles (<50 nm) and favor the higher rates of new particle formation 
and slower atmospheric dispersion, which explains why UFP numbers or 
PSC are usually higher in the winter than in the summer (Sioutas et al., 
2005). Interestingly, Herner et al. (2006) stated that lower temperatures 
near the ground at night might contribute to the formation of stable 
atmospheric layers that trap primary pollutants near their emissions 
source; and this effect can thus dominate UFP concentrations in regions 
that are not heavily influenced by photochemistry (Herner et al., 2005). 
Therefore, UFP concentration, composition, and volatility exhibit sig-
nificant seasonal variability due to high spatial variability, indoor 
sources, variable infiltration of UFPs from various outside sources, and 
meteorological conditions (Sioutas et al., 2005). 

4.5. Potential mechanisms of UFP and PSC on CVD 

There are multiple reasons to believe that the health effects of UFPs 
or PM0.1 are greater than those with larger particles. Toxicological 
studies found that UFPs are present in larger numbers, have a greater 

combined surface area, and adsorb larger concentrations of toxic air 
pollutants (oxidant gases, organic compounds, transition metals) per 
unit mass (Sioutas et al., 2005). After entering the body through the 
lungs, UFPs quickly translocate to other organs. Due to their small size, 
UFPs have different distribution characteristics in the respiratory tree 
and may alter cellular function in ways that circumvent normal 
signaling pathways (Li et al., 2016). Additionally, UFPs can penetrate 
intracellularly and potentially cause DNA damage. 

Another potential mechanism by which UFPs cause adverse health 
outcomes is lung inflammation and its subsequent spread of inflamma-
tory mediators to distal organs. UFPs may cause systemic inflammation, 
endothelial dysfunction, and coagulation changes through which in-
dividuals may further develop IHD or hypertension (Schraufnagel, 
2020). These findings were supported by the elevated multiple bio-
markers among these patients, including C-reactive protein (CRP), 
circulating polymorphonuclear leukocytes, platelets, fibrinogen, plasma 
viscosity, and other markers after UFP exposure. Fine particles also 
promote endothelial dysfunction, vascular inflammation, and athero-
sclerosis. Increasingly, literature reports that PM0.1 plays a major role in 
most of these factors (Hildebrandt et al., 2009; Olsen et al., 2014). Most 
studies show a far greater effect for UFPs than larger particles. 
Furthermore, UFPs that enter alveoli can be retained in surfactant, thus 
sidestepping the mucociliary escalator clearance mechanisms (Möller 
et al., 2008). The retention half-lives of titanium dioxide particles in 
animal lungs are 170 days for 250-nm particles and 500 days for 20-nm 
particles, indicating that smaller particles cause more persistent 
inflammation than larger ones (Oberdorster et al., 1994). 

4.6. Study strengths and limitations 

To our knowledge, this is one of the few studies that have improved 
UFP exposure assessment by using high-resolution air pollution simu-
lation data generated by GEOS-Chem-APM, a previously validated 
chemical transport model. Compared to the relatively limited number of 
EPA PM2.5 monitors in NYS, this study utilized 286 simulation grids/ 
points spread out evenly over NYS at a 17 × 17-mile resolution. This 
exposure assessment model controlled for many environmental factors, 
including several co-pollutants, meteorological conditions, major 
exposure sources (traffic, power plants, residential, agriculture, biomass 
burning, biogenic, ships, aviation, and others), and chemical reactions 
occurring in the atmosphere. In contrast to most prior UFP studies that 
utilized one or a few PM monitors, our exposure assessment can be 
applied to larger areas, thereby reducing the exposure misclassification 
bias in previous studies. In addition to UFPnc, we also evaluated the 
impacts of PSC on CVD, which helped us compare and identify the most 
sensitive exposure metrics. Furthermore, this may be the largest study 
evaluating the effects of UFPs and PSC on CVD in the US. We evaluated 
approximately 2 million CVD hospital admission records and several 
major CVD subtypes in NYS, one of the largest states in the US. Another 
advantage is the use of objective SPARCS health data to reduce reporting 
bias, a common limitation encountered by studies based on survey data. 
Finally, we used a multi-pollutant model to control for several co- 
pollutants in the analyses, which is a major strength compared to 
many prior studies that used single pollutant models. 

On the other hand, several potential limitations should be consid-
ered. The first concern is how accurate the high-resolution air pollution 
simulations are. While GEOS-Chem-APM has been validated around the 
globe by several previous studies as described in a previous session (PSC 
and UFP Simulation Model and Data), detailed measurements of UFPs 
and PSC in NYS are very limited or unavailable and need further vali-
dation. For this concern, we have validated the model simulated UFP 
against those observed at a monitoring site in the Pinnacle State Park 
(PSP) in NYS (see Supplement 1). Additionally, we performed sensitivity 
analyses using the available UFP monitoring data in two small urban 
areas (Queens and Rochester sites) to link with the CVD hospitalization 
data within the 15 miles of the same regions. We found a similar range of 
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excess risks (0.3%–0.7%) of overall CVD admissions and immediate ef-
fect per IQR increase of UFP in this sensitivity analysis as we originally 
found in our statewide study. We also found that cardiac arrhythmias, 
stroke, and IHD increased in the sensitivity analysis. However, the 
increased risk of stroke and IHD were not statistically significant due to 
the small sample sizes. 

Another limitation is that we only included CVD hospital admission 
cases, representing the most severe patients but missing the less severe 
cases. Therefore, the generalizability of this study may be limited. 
However, stroke, IHD, and most cardiovascular diseases typically 
require immediate and urgent medical attention. Therefore, it may be 
appropriate to use emergency department visits for these health out-
comes. In addition, our result that one of the younger age groups (5–17 
years old) showed the highest CVD risk associated with PSC is very 
interesting because CVDs are usually higher among adults or seniors. We 
evaluated the CVD subtypes among children and found that the most 
common CVDs among 5–17 years old children are lymphadenitis, fol-
lowed by dysrhythmias, hypertension, and hypotension. These uncom-
mon CVDs occurring in children deserve further research. 

Finally, confounding effects are an important concern. Nevertheless, 
the case-crossover design has automatically controlled for some con-
founders and inherited factors, such as age, sex, race, ethnicity, family 
history of CVD or other diseases, lifestyle choices (smoking or alcohol 
drinking), occupation, and indoor exposures that usually do not change 
within one month, and the cases were compared with themselves. The 
potential bias resulting from intramonthly variability in indoor exposure 
or occupation is likely non-differential, and the real association may 
have been underestimated. We also controlled for all simulated co- 
pollutants (which have correlation coefficients <0.70 with UFPs), tem-
perature, relative humidity, and time-varying variables (weekday or 
weekend, holidays, season, long-term trend) in the model. However, we 
could not adjust for some residual confounders, such as activity patterns. 

This study provides a useful tool for environmental scientists or ep-
idemiologists to predict UFPnc and PSC at a much finer resolution 
throughout NYS than ever before. As there are currently very few UFP 
monitors statewide, our GEOS-Chem-APM model would significantly 
improve the current exposure assessment in UFP and other criteria 
pollutants if more measurements become available and model resolution 
can be further refined. Our study also compared two particle metrics and 
their relationship with CVDs, contributing to new scientific knowledge. 
Furthermore, physicians and public health agencies should be aware of 
the transient and lasting effects of UFPs on CVDs, which could be used to 
prevent and intervene in those severe cases. 

5. Conclusion 

Our study found an immediate and strong positive association be-
tween PSC and overall CVDs, but a delayed, lasting effect of UFPnc on 
CVD. PSC was a more sensitive indicator than UFPnc. Exposure to large 
PSC was associated with an immediate increased risk of hospital ad-
missions for a stroke, hypertension, and IHD. The adverse effects of PSC 
on CVDs were highest among children (5–17 years old), during the fall 
and winter seasons, and during cold temperature days. Further studies 
are needed to validate our findings and evaluate the long-term effects of 
PSC and UFPs on CVDs and other health outcomes. 
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